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Read Out Integrated Circuit 
ROIC

ROIC may include:
Amplifier electronics 
Control signal generators
Analog-Digital Conversion
On-chip Digital Signal Processing



Distance information: a time 
of flight measurement
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Motivation: Readout Integrated Circuit ROIC for 
active/passive imaging systems
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ROIC conventional architecture

Time Domain Multiple Access
Control signals access every 
readout cell in a time scheduled 
manner, sampling the voltage 
signals and transferring them to 
the readout bus.

It requires faster electronics for 
bigger photodetector arrays.

Each readout cell must be capable 
of storing the required charge, 
which becomes a problem for big 
array sizes (1024x1024).
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• Each column is multiplied by a unique code, and the 
multiplied signals are summed in the row common bus

• Codes are chosen to minimize cross talk

• Current-to-voltage amplifier per row

• Multiplexer scheme to generate single data stream

ROIC proposed architecture

Orthogonal encoding ROIC



Orthogonal Encoding ROIC
First Phase Design Tasks

Test system with four 
readout cells and a discrete 
component I-V amplifier

Design of the 
Active Readout 
Cell 

To design and fabricate a test chip 
for a proof of principle of the 
active 2D readout technique.



Active Readout Cell:
Design Requirements

Multiplies the input current by the code
Provides detector virtual ground
Couples the detector impedance to the bus
Reduces charge injection noise

Readout cell for orthogonal encoding



Active Readout Cell:
Implementation

Differential code multiplier

Readout cell for 
orthogonal encoding
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Active Readout Cell
Current Locked Loop ILL

Characteristics

Low input impedance
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Active Readout Cell

Detector virtual ground 
Low input impedance

Differential code multiplier

Current Locked Loop (ILL)

ILL Replica

Current amplifier
Current gain 
High output impedance
Charge cancellation

Signal-code modulation 
Balanced charge injection



Test chip implementation

Test chip with 
cell prototypes

4 instances of active readout cell

4 instances of cell with input modulator 
only



Prototype system testing

Custom printed circuit board 
for electro-optical testing

Power
Conditioning Amps

Code inputs

DUT
Electrical inputs

Amps

ROIC electrical 
verification set up

Code signals generated and 
conditioned externally 

Voltage sources + Resistors emulate 
electrical current inputs

High-gain off-chip transimpedance
amplifiers on the pcb

Data is acquired and processed in 
the computer

Test chip 
with cell 
prototypes



Verification Results

Proof of principle system 
with 2 encoding cells

c1

in1i

c1------
c2

in2i

c2------

Common Bus To i-v amplifier

Test results



Prototyping phase
conclusion

Satisfactory results with the 2 encoding cells experiment 
confirm validity of the orthogonal encoding scheme for 
readout circuits

Integrating the transimpedance amplifiers with improved 
versions of readout cells should enhance noise 
performance of the overall system

Applicability extends to passive imaging systems

Depending on the system conditions, the orthogonal 
encoding architecture is  advantageous with respect to 
the conventional time-multiplexed scheme
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Active Readout Cell Improvements
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Active Readout Cell Improvements
Fully differential architecture

Noise from cascode
mirrors is minimized

Additional current mirror 
for complementary 
output

Improved charge injection 
cancellation and offset
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Active Readout Cell Improvements
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Input impedance engineering

Input impedance without Cin

Small-signal model
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Active Readout Cell Improvements
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Input impedance with Cin
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2 2 2 2 2 2 2

1 3 1 3 1 4 2 3 3 1 4 2 3 22 ( (2 )) 2 (2 )gs gs N P N N P PC g C C g C g g g g C g C C g g g g C g+ + − + + − +

ILL pole-zero analysis

Kz=



Active Readout Cell Improvements
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Input impedance engineering (cont’d)

Compensated input impedance with Cin

CP = 270fF and CN = 70fF compensate the input 
impedance for Cin = 500fF
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Improved Active Readout Cell 
Performance
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Improved Active Readout Cell 
Performance
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Transimpedance amplifier 
implementation

Capacitive TIA (CTIA) 

RST switch injects charge 
and produces sampling 
(kT/C) noise 

CDS structure removes 
sampling noise

SH capacitor produces 
voltage divider 

CTIA with correlated 
double sampling (cds)



CTIA system-level implementation

Control 
signals 

Dynamics of CTIA system with cds

OTA 
output 

cds
output 

System 
output 



CTIA system-level implementation

Fully differential 
CTIA system

Advantages of fully differential CTIA system

Transient response of 

Single-ended vs. Differential output 
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differential output effectively cancels the pedestal error



CTIA system-level implementation

External OTA 
compensation

Input stabilization 
switches

External OTA compensation and 
sizing of switches and capacitors

CCDS = 5pF, CSH = 1pF, Ccomp=3pF, Cint = 50fF 

Switches designed for worst-case scenario RSW~1kΩ

OTA



OTA circuit-level implementation

Design requirements

2-stage Miller compensated OTA, design requirements

•Gm > 250mSie
•avo (2% settling accuracy) > 40k
•Input referred noise < 5nV/rtHz
•Dominant pole and non-dominant 

pole more than three 
decades apart

•Output common-mode < 10mV
•CMRR > 60dB
•Input differential capacitance not 

to exceed 15pF
•Output swing of 2.4Vpk-pk
•Dual power supplies of ±2.5V
•Best effort on power consumption 

and layout area
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OTA design methodology



OTA design methodology

Transistor models 
from vendor are used 
to optimize the design 
of a single stage of 
amplification with 
active loading

Bias conditions are 
replicated, and noise 
from biasing strategy 
is properly filtered out

Design results are 
back-annotated in 
work sheet

First and second stage design strategy
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Circuit for design of 
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OTA design methodology

Q13 and Q3 compute 
common-mode 
voltage from the OTA 
output and “compare”
it to the desired value 
(GND)

The amplifier 
produces a current 
output that regulates 
the common-mode 
voltage in the 
differential amplifier

Common-Mode amplifier design

Common-mode amplifier circuit

W=5u
L=5u
M=4

Q13

iout

imir

GND

ibias

CSp

cascP

outC

W=10.15u
L=2.1u

Q22

W=10.15u
L=2.1u

Q21

W=10.15u
L=0.7u

M=8

Q18

vss

W=10.15u
L=2.1u

M=2

Q1

W=10.15u
L=2.1u

M=2

Q16

W=10.15u
L=2.1u

M=2

Q6

W=10.15u
L=0.7u

Q7

W=10.15u
L=0.7u

Q8

W=10.15u
L=0.7u

Q9

vdd

W=5u
L=5u

Q11

W=5u
L=5u

Q12

W=5u
L=5u
M=4

Q2

W=5u
L=5u
M=4

Q4

W=5u
L=5u
M=4

Q3

W=10.15u
L=1.925u

M=8

Q5

W=10.15u
L=1.925u

M=8

Q10

W=10.15u
L=1.925u

M=8

Q14

W=10.15u
L=0.7u

M=8

Q19

W=11.55u
L=1.05u

Q20

vdd

inA inB

outG

CSn

tailBtailA

curBcurA



OTA design methodology
Final schematic for differential OTA
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OTA Performance
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OTA Performance
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OTA Performance
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Second generation ROIC
Four 1x16 arrays + Fully differential CTIA



Readout cell physical design
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CTIA physical design

Four-capacitor layout using 
common-centroid techniques

Dummy cap in the middle 
shorted to ground

Matching transistors and capacitors

All differential pairs are 
designed with multi-finger, 
common-centroid structure

The differential OTA is divided 
into differential pair sections



ROIC physical design
Fully differential CTIA amplifier



ROIC physical design
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Conclusion

( ) ( ) ( ) [ ( ) ( )] [ ( ) ( )],od o o in ini t i t i t i t i t c t c t+ − + −= − = − ⋅ −

Satisfactory results with the prototype experiment confirm 
validity of the orthogonal encoding scheme for readout circuits

Expect system performance improvement with the design 
optimization of the readout cell and the integration of the fully 
differential CTIA

The readout cell with the code-
modulator only is an outstanding 
candidate for highly-scalable imaging 
systems. Its characteristics: only four 
transistors, zero noise, no power 
consumption, no band width 
limitations.

Further improvement is accomplished 
if differential photodetector devices 
are used
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Conclusion (cont’d)
Take advantage of switched nature of the system to cancel 
charge injection peaks from readout cells. 

With code-modulator-only cells the system becomes highly-
scalable but the noise performance of the OTA amplifier 
needs to be improved by one order of magnitude

Code-modulator-only 
readout cell array Capacitive Transimpedance

amplifier per row



Conclusion (cont’d)

Integrating an amplifier to perform differential to single-
ended conversion inside the chip would improve the system 
performance (pedestal voltages and vestigial voltage spikes 
would be cancelled inside the integrated circuit)

Capacitive Transimpedance
amplifier per row

Single-ended 
output

Differential amplifier 
per row
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